Chronic wound animal model
Main Article Content
Abstract
Chronic wounds not only severely impact patients' quality of life but also impose financial burdens on healthcare systems. They are commonly associated with underlying conditions such as vascular ulcers, diabetic foot ulcers, and pressure sores. Experimental models of Chronic wounds play a crucial role in studying pathogenesis and developing new therapies. This paper discusses common types of Chronic wounds and experimental models in animals, along with their advantages, limitations, applications, and considerations in experimental design, aiming to improve treatment outcomes for patients with Chronic wounds.
Article Details
Keywords
Chronic wound, animal model
References
2. Tâm Anh Hospital (2024). Nguy cơ loét bàn chân ở bệnh nhân tiểu đường. Tâm Anh Hospital. https://tamanhhospital.vn
3. MSD Manual (2024). Pressure Ulcers. MSD Manual Professional Version. https://www.msdmanuals.com
4. Nguyễn Ngọc Tuấn (2021). Tổng quan mô hình nghiên cứu vết thương thực nghiệm và phương pháp đánh giá quá trình liền vết thương. Phần 1: Tổng quan về một số mô hình nghiên cứu liền vết thương trên động vật. Tạp chí Y học thảm hoạ & Bỏng. 5, tr. 58-69.
5. Smith R, Brown K, Johnson L. (2021). Advances in ischemic wound models: A comprehensive review of techniques and applications. Journal of Experimental Medicine. 224(3), 345-362. doi:10.1084/jem.20210234.
6. Robert N, Keith G.H, Paul. M. (2014). Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Disease Models & Mechanisms. 7, 1205-1213. doi:10.1242/dmm.016782.
7. Zhang Y, Wang P, Li X, et al. (2022). Novel animal models for studying chronic wounds: From pathophysiology to treatment. Wound Repair and Regeneration. 30(1), 12-29. doi:10.1111/wrr.12987.
8. Nguyễn Hữu Nam Thắng, Nguyễn Hữu Tú, Hồ Thị Hoài Thu. (2024). Xây dựng quy trình chẩn đoán biến thể đa hình đơn nucleotit rs1800629 trên vùng khởi động gen TNF- bằng kỹ thuật PCR-RFLP. Tạp chí Y học Việt Nam. 535(1B), tr. 1-7.
9. Liu X, Yang M, Kang L et al. (2021). Comparative analysis of diabetic wound healing models in mice and swine with streptozotocin-induced diabetes. Wound Repair Regen. 29(4), 523-534.
10. Okonkwo UA, Chen L, Ma D, Haywood VA et al. (2022). The NONcNZO10 polygenic mouse model exhibits superior chronic wound healing characteristics compared to db/db mice. Wound Repair Regen. 30(2), 215-228.
11. Krzyszczyk, P., Schloss, R., Palmer, A., & Berthiaume, F. (2018). The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound-healing Phenotypes. Frontiers in Physiology. 9, 419. doi:10.3389/fphys.2018.00419.
12. Yang, J., Shi, J., Kaw, G., & Wang, Z. (2021). VEGF-Induced Endothelial Progenitor Cell Migration Mediates Angiogenesis in Wound Healing. International Journal of Molecular Sciences. 22(3), 1575.
13. Sun, X., Altalhi, W., Nunes, S. S., & Skovronova, R. (2022). Melatonin-Primed Mesenchymal Stem Cell-Derived Exosomes Promote Diabetic Wound Healing by Modulating Macrophage Polarization. Biomedicine & Pharmacotherapy. 150, 113025.
14. Pyter LM, Yang L, da Rocha JM, Engeland CG (2014). The effects of social isolation on wound healing mechanisms in female mice. Physiol. Behav. 127, 64-70.
15. Roy S, Elgharably H, Sinha M, Ganesh K et al. (2014). Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function. J. Pathol. 233, 331-343.